

## sense and simplicity

### Low Cost Illumination-Grade LEDs Enabled by Nitride Epitaxy on 150mm Si

Epi Technology Lead:

Epitaxy and Device Characterization:

Wafer Process Development:

Principle Investigator:

Byung-kwon Han

Robert Armitage

Rajwinder Singh

John Epler

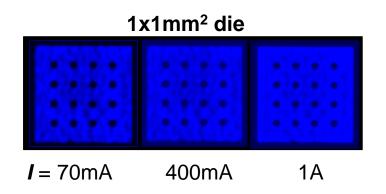
#### Project Goal:

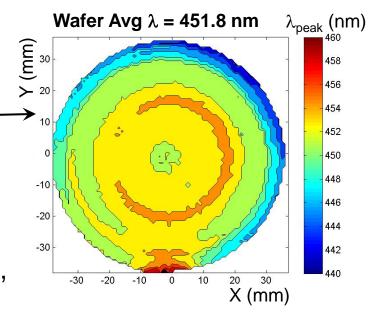
 Demonstrate commercially-competitive warm white LEDs at a reduced cost by growing on a less expensive substrate

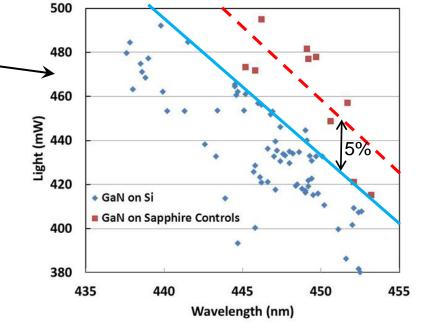
#### Approach:

- Evaluate GaN on Si epitaxy by building 1x1 mm<sup>2</sup> Luxeon Rebels
- Year 1 and 2 wafer size: 3", Year 3 wafer size: 150mm
- Include reliability evaluation

#### Status


- Best performance (350mA, 445nm) 484mW, WPE = 40%
- Wafer fab yield >85%
- Thin Film processing yield is low because of substrate removal etch
- Program broadened to include alternate transparent substrates, engineered substrates, wafer level substrate removal


#### Next steps


150mm growth on Si to begin in July (start of Year 3)

### **Epitaxy and Device Results**

- ~30% reduction in run-to-run PL wavelength standard deviation
- IQE (450nm, 350mA) = 55 to 60%
- 85 vs 25 °C de-rating factor = 0.94
- Excellent stress control, final bow <20um, no cracking
- Sheet resistance <40Ω/sq.</li>
- Hero GaN on Si devices are 5% below median controls







